Yang Mills

Let $M$ be a 4-d manifold equipped with metric $g$, and denote the determinant of $g$ by $\lvert g \rvert$. Let $G \subset SO \left( l \right)$ be the compact structure group for the Yang-Mills action we will construct on M. Let $\mathfrak{g} \subset so \left( l \right)$ denote the Lie algebra of $G$, and $\left( A , B \right) \equiv \mathrm{tr} A B^{\dagger}$ the trace inner product on $\mathfrak{g}$. Let $*$ represent the Hodge dual induced by the metric $g$. For ordinary real-valued $p$-forms in $\Lambda^p M$, the Hodge dual is defined in terms of the inner product on forms, which in turn is linearly extended from the definition

(1)
\begin{align} \langle e^1 \wedge \cdots \wedge e^p , f^1 \wedge \cdots \wedge f^p \rangle = \mathrm{det} \left[ g^{\mu \nu} e^i_{\mu} f^j_{\nu} \right]. \end{align}

In terms of this inner product, the Hodge dual is defined by the expression

(2)
\begin{align} \omega \wedge * \mu = \langle \omega , \mu \rangle \cdot \mathrm{vol}, \end{align}

where $\mathrm{vol}$ is the volume form induced by the metric $g$. In coordinates, this reduces to

(3)
\begin{align} * \omega = \frac{\sqrt{ \lvert g \rvert } }{p! \left( n - p \right)!} \omega_{\alpha_1 \dots \alpha_p} \left. \epsilon^{\alpha_1 \dots \alpha_p} \right. _{\beta_{p+1} \dots \beta_n} dx^{\beta_{p+1}} \wedge \dots \wedge dx^{\beta_n}, \end{align}

where $\epsilon_{\alpha_1 \dots \alpha_n}$ is the totally antisymmetric symbol and $\left. \epsilon^{\alpha_1 \dots \alpha_p}\right. _{\beta_{p+1} \dots \beta_n} = \epsilon_{\gamma_1 \dots \gamma_p \beta_{p+1} \dots \beta_n} g^{\alpha_1 \gamma_1} \cdots g^{\alpha_p \gamma_p}$.

For a Lie-algebra-valued $p$-form $\omega \otimes T \in \Lambda^p M \otimes \mathfrak{g}$, the definition of the Hodge dual is extended so that

(4)
\begin{align} * \left( T \otimes \omega \right) \equiv T^{\dagger} \otimes * \omega \end{align}

The inner product of two Lie-algebra valued forms is

(5)
\begin{align} \langle T \otimes \omega , S \otimes \mu \rangle &= \mathrm{tr} \left[ \left( T \otimes \omega \right) \wedge * \left( S \otimes \mu \right) \right] = \mathrm{tr} \left[ \left( T \otimes \omega \right) \wedge \left( S^{\dagger} \otimes * \mu \right) \right] \\ &= \mathrm{tr} \left( T S^{\dagger} \right) \left( \omega \wedge * \mu \right) = \mathrm{tr} \left( T S^{\dagger} \right) \langle \omega , \mu \rangle \cdot \mathrm{vol} \end{align}

The Lorentzian Yang-Mills action is given by

(6)
\begin{align} S_{YM} \left( A \right) = - \frac{1}{2} \int_M \mathrm{tr} \left( F \wedge * F \right), \end{align}

while the Euclidean Yang-Mills action is

(7)
\begin{align} S^E_{YM} \left( A \right) = \frac{1}{2} \int_M \mathrm{tr} \left( F \wedge * F \right). \end{align}

Note that the signs would be reversed, as in Nakahara, Baez/Muniain, or Jackiw, if we did not incorporate the adjoint into the definition of the Hodge dual. In terms of the definitions give above, we can rewrite the Lorentzian action as

(8)
\begin{align} - \frac{1}{2} \int_M \langle F , F \rangle \, \mathrm{vol} &= - \frac{1}{2} \int_M \langle \frac{1}{2} F_{\mu \nu} dx^{\mu} \wedge dx^{\nu} , \frac{1}{2} F_{\rho \sigma} dx^{\rho} \wedge dx^{\sigma} \rangle \, \mathrm{vol} \\ &= - \frac{1}{8} \int_M \mathrm{tr} \left( F_{\mu \nu} F^{\dagger}_{\rho \sigma} \right) \Bigl\langle dx^{\mu} \wedge dx^{\nu} , dx^{\rho} \wedge dx^{\sigma} \Bigr\rangle \mathrm{vol} \\ &= - \frac{1}{8} \int_M \left( F_{\mu \nu} , F_{\rho \sigma} \right) \det \left( \begin{array}{ll} g^{\mu \rho} & g^{\mu \sigma} \\ g^{\nu \rho} & g^{\nu \sigma} \end{array} \right) \mathrm{vol} \\ &= - \frac{1}{4} \int_M g^{\mu \rho} g^{\nu \sigma} \left(F_{\mu \nu} , F_{\rho \sigma} \right) \sqrt{\lvert g \rvert} dx_M \end{align}

or in terms of a normalized (with respect to the trace inner product) basis of the Lie algebra,

(9)
\begin{align} - \frac{1}{4} \int_M F^I_{\mu \nu} F^{\mu \nu}_I \sqrt{\lvert g \rvert} dx_M, \end{align}

where $I$ runs over the Lie algebra basis, and up and down $I$ indices are the same. Thus for Minkowski space, the Lagrangian density for Yang-Mills is $\mathcal{L} = - \frac{1}{4} F^{I}_{\rho \sigma} F_{I}^{\rho \sigma}$. Alternatively, we could have reached this coordinate expression for the Yang-Mills action by substituting the coordinate form of $*F$ (use 4 and 3) into 7.

We find the momenta canonically conjugate to the components $A_{\mu}$ of the connection by

(10)
\begin{align} \Pi^{\mu} = \frac{\delta \mathcal{L}}{\delta \dot{A}_{\mu}}, \end{align}

but since the Lagrangian does not depend on $\dot{A}_0$, we cannot assign a momentum canonically conjugate to $A_0$. We deal with this issue by defining our Hamiltonian formalism with the Weyl gauge, $A_0 = 0$, imposed, so that we now only have three configuration variables $A_1, A_2, A_3$. We find their canonical momenta to be

(11)
\begin{align} \Pi^{i} = E^i = \dot{A}_i, \end{align}

where the Latin indices run over space ($i = 1, 2, 3$) only. Note that $E$ is the negative of the variable that in Maxwell theory would be called the electric field. We can also define the analog of the magnetic field $B^i = \frac{1}{2} \epsilon^{ijk} F_{jk}$.

Note that the squared vector norms of $E$ and $B$ are given by

(12)
\begin{align} \lvert E \rvert ^2 = - F^{I}_{0i} F_{I}^{0i} \\ \lvert B \rvert ^2 = \frac{1}{2} F^{I}_{jk} F_{I}^{jk}, \end{align}

so in terms of these we can write

(13)
\begin{align} S_{YM} \left( A \right) &= - \frac{1}{4} \int_{M} F^{I}_{\rho \sigma} F_{I}^{\rho \sigma} dx^0 \cdots dx^3 \\ &= \frac{1}{2} \int_M \lvert E \rvert ^2 - \lvert B \rvert ^2 dx^0 \cdots dx^3 \end{align}

and a Legendre transform $\mathcal{H} = \dot{A}^I_i E_I^i - \mathcal{L}$ gives the Hamiltonian density

(14)
\begin{align} \mathcal{H} = \frac{1}{2} \left( \lvert E \rvert ^2 + \lvert B \rvert ^2 \right) \end{align}

A similar analysis of the Euclidean action would give

(15)
\begin{align} S^E_{YM} = \frac{1}{2} \int_M \lvert E \lvert ^2 + \lvert B \rvert ^2 dx^0 \dots dx^3 \end{align}

because of the differing sign in the definition of the action and the Euclidean signature of the metric.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License